Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 309
Filtrar
1.
J Biol Chem ; : 107229, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38537698

RESUMO

Mucosal-associated invariant T (MAIT) cells can elicit immune responses against riboflavin-based antigens presented by the evolutionary conserved MHC Class I related-1 protein, MR1. While we have an understanding of the structural basis of human MAIT cell receptor (TCR) recognition of human MR1 presenting a variety of ligands, how the semi-invariant mouse MAIT TCR binds mouse MR1-ligand remains unknown. Here we determine the crystal structures of two mouse TRAV1-TRBV13-2+ MAIT TCR-MR1-5-OP-RU ternary complexes, whose TCRs differ only in the composition of their CDR3ß loops. These mouse MAIT TCRs mediate high affinity interactions with mouse MR1-5-OP-RU and cross-recognise human MR1-5-OP-RU. Similarly, a human MAIT TCR could bind mouse MR1-5-OP-RU with high affinity. This cross-species recognition indicates the evolutionary conserved nature of this MAIT TCR-MR1 axis. Comparing crystal structures of the mouse versus human MAIT TCR-MR1-5-OP-RU complexes provides structural insight into the conserved nature of this MAIT TCR-MR1 interaction, and conserved specificity for the microbial antigens, whereby key germline-encoded interactions required for MAIT activation are maintained. This is an important consideration for the development of MAIT cell-based therapeutics that will rely on preclinical mouse models of disease.

2.
Dev Cell ; 59(6): 705-722.e8, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38354738

RESUMO

Wnt signaling is a critical determinant of cell lineage development. This study used Wnt dose-dependent induction programs to gain insights into molecular regulation of stem cell differentiation. We performed single-cell RNA sequencing of hiPSCs responding to a dose escalation protocol with Wnt agonist CHIR-99021 during the exit from pluripotency to identify cell types and genetic activity driven by Wnt stimulation. Results of activated gene sets and cell types were used to build a multiple regression model that predicts the efficiency of cardiomyocyte differentiation. Cross-referencing Wnt-associated gene expression profiles to the Connectivity Map database, we identified the small-molecule drug, tranilast. We found that tranilast synergistically activates Wnt signaling to promote cardiac lineage differentiation, which we validate by in vitro analysis of hiPSC differentiation and in vivo analysis of developing quail embryos. Our study provides an integrated workflow that links experimental datasets, prediction models, and small-molecule databases to identify drug-like compounds that control cell differentiation.


Assuntos
Miócitos Cardíacos , Via de Sinalização Wnt , ortoaminobenzoatos , Miócitos Cardíacos/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Via de Sinalização Wnt/genética , Mesoderma
3.
Sci Immunol ; 9(91): eade6924, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277465

RESUMO

Mucosal-associated invariant T (MAIT) cells are innate-like T cells that recognize bacterial riboflavin-based metabolites as activating antigens. Although MAIT cells are found in tissues, it is unknown whether any host tissue-derived antigens exist. Here, we report that a sulfated bile acid, cholic acid 7-sulfate (CA7S), binds the nonclassical MHC class I protein MR1 and is recognized by MAIT cells. CA7S is a host-derived metabolite whose levels were reduced by more than 98% in germ-free mice. Deletion of the sulfotransferase 2a family of enzymes (Sult2a1-8) responsible for CA7S synthesis reduced the number of thymic MAIT cells in mice. Moreover, recognition of CA7S induced MAIT cell survival and the expression of a homeostatic gene signature. By contrast, recognition of a previously described foreign antigen, 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU), drove MAIT cell proliferation and the expression of inflammatory genes. Thus, CA7S is an endogenous antigen for MAIT cells, which promotes their development and function.


Assuntos
Células T Invariantes Associadas à Mucosa , Animais , Camundongos , Ácidos e Sais Biliares , Ligantes , Sulfatos , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos
4.
J Immunol ; 212(3): 389-396, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38117799

RESUMO

Mucosal-associated invariant T (MAIT) cells are an abundant population of unconventional T cells in humans and play important roles in immune defense against microbial infections. Severe COVID-19 is associated with strong activation of MAIT cells and loss of these cells from circulation. In the present study, we investigated the capacity of MAIT cells to recover after severe COVID-19. In longitudinal paired analysis, MAIT cells initially rebounded numerically and phenotypically in most patients at 4 mo postrelease from the hospital. However, the rebounding MAIT cells displayed signs of persistent activation with elevated expression of CD69, CD38, and HLA-DR. Although MAIT cell function was restored in many patients, a subgroup displayed a predominantly PD-1high functionally impaired MAIT cell pool. This profile was associated with poor expression of IFN-γ and granzyme B in response to IL-12 + L-18 and low levels of polyfunctionality. Unexpectedly, although the overall T cell counts recovered, normalization of the MAIT cell pool failed at 9-mo follow-up, with a clear decline in MAIT cell numbers and a further increase in PD-1 levels. Together, these results indicate an initial transient period of inconsistent recovery of MAIT cells that is not sustained and eventually fails. Persisting MAIT cell impairment in previously hospitalized patients with COVID-19 may have consequences for antimicrobial immunity and inflammation and could potentially contribute to post-COVID-19 health problems.


Assuntos
COVID-19 , Células T Invariantes Associadas à Mucosa , Humanos , Antígenos HLA-DR , Inflamação
5.
J Cell Commun Signal ; 17(4): 1293-1307, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37991681

RESUMO

Drug resistance represents a major problem in cancer treatment. Doxorubicin (adriamycin) is an injectable DNA intercalating drug that halts cancer cell growth by inhibiting topoisomerase 2, but its long-term effectiveness is compromised by onset of resistance. This study demonstrates that expression of the PAR2 gene in human colon adenocarcinoma tissue samples was the highest among 32 different cancer types (n = 10,989), and higher in colon adenocarcinoma tissues (n = 331) than normal colon tissues (n = 308), revealing an association between PAR2 expression and human colon cancer. HT29 cells are a human colorectal adenocarcinoma cell line that is sensitive to the chemotherapeutic drug doxorubicin and also expresses PAR2. We find that PAR2 activation in HT29 cells, either by an endogenous protease agonist (trypsin) or an exogenous peptide agonist (2f-LIGRL-NH2), significantly reduces doxorubicin-induced cell death, reactive oxygen species production, caspase 3/7 activity and cleavage of caspase-8 and caspase-3. Moreover, PAR2-mediated MEK1/2-ERK1/2 pathway induced by 2f-LIGRL-NH2 leads to upregulated anti-apoptotic MCL-1 and Bcl-xL proteins that promote cellular survival. These findings suggest that activation of PAR2 compromises efficacy of doxorubicin in colon cancer. Further support for this conclusion came from experiments with human colon cancer HT29 cells, either with the PAR2 gene deleted or in the presence of a pharmacological antagonist of PAR2, which showed full restoration of all doxorubicin-mediated effects. Together, these findings reveal a strong link between PAR2 activation and signalling in human colon cancer cells and increased survival against doxorubicin-induced cell death. They support PAR2 antagonism as a possible new strategy for enhancing doxorubicin therapy.

6.
J Med Chem ; 66(20): 14357-14376, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37795958

RESUMO

Inhibitors of histone deacetylases (HDACs) have received special attention as novel anticancer agents. Among various types of synthetic inhibitors, benzamides constitute an important class, and one is an approved drug (chidamide). Here, we present a novel class of HDAC inhibitors containing the N-(2-aminophenyl)-benzamide functionality as the zinc-binding group linked to various cap groups, including the amino acids pyroglutamic acid and proline. We have identified benzamides that inhibit HADC1 and HDAC2 at nanomolar concentrations, with antiproliferative activity at micromolar concentrations against A549 and SF268 cancer cell lines. Docking studies shed light on the mode of binding of benzamide inhibitors to HDAC1, whereas cellular analysis revealed downregulated expression of EGFR mRNA and protein. Two benzamides were investigated in a mouse model of bleomycin-induced pulmonary fibrosis, and both showed efficacy on a preventative dosing schedule. N-(2-Aminophenyl)-benzamide inhibitors of class I HDACs might lead to new approaches for treating fibrotic disorders.


Assuntos
Antineoplásicos , Inibidores de Histona Desacetilases , Camundongos , Animais , Linhagem Celular , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Inibidores de Histona Desacetilases/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Benzamidas/química , Linhagem Celular Tumoral
7.
Front Immunol ; 14: 1109759, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720229

RESUMO

Introduction: Mucosal-associated invariant T (MAIT) cells are a population of innate-like T cells, which mediate host immunity to microbial infection by recognizing metabolite antigens derived from microbial riboflavin synthesis presented by the MHC-I-related protein 1 (MR1). Namely, the potent MAIT cell antigens, 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU) and 5-(2-oxoethylideneamino)-6-D-ribitylaminouracil (5-OE-RU), form via the condensation of the riboflavin precursor 5-amino-6-D-ribitylaminouracil (5-A-RU) with the reactive carbonyl species (RCS) methylglyoxal (MG) and glyoxal (G), respectively. Although MAIT cells are abundant in humans, they are rare in mice, and increasing their abundance using expansion protocols with antigen and adjuvant has been shown to facilitate their study in mouse models of infection and disease. Methods: Here, we outline three methods to increase the abundance of MAIT cells in C57BL/6 mice using a combination of inflammatory stimuli, 5-A-RU and MG. Results: Our data demonstrate that the administration of synthetic 5-A-RU in combination with one of three different inflammatory stimuli is sufficient to increase the frequency and absolute numbers of MAIT cells in C57BL/6 mice. The resultant boosted MAIT cells are functional and can provide protection against a lethal infection of Legionella longbeachae. Conclusion: These results provide alternative methods for expanding MAIT cells with high doses of commercially available 5-A-RU (± MG) in the presence of various danger signals.


Assuntos
Células T Invariantes Associadas à Mucosa , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Adjuvantes Imunológicos , Aldeído Pirúvico , Riboflavina
8.
Mar Drugs ; 21(9)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37755100

RESUMO

Application of a miniaturized 24-well plate system for cultivation profiling (MATRIX) permitted optimization of the cultivation conditions for the marine-derived fungus Talaromyces sp. CMB-TU011, facilitating access to the rare cycloheptapeptide talarolide A (1) along with three new analogues, B-D (2-4). Detailed spectroscopic analysis supported by Marfey's analysis methodology was refined to resolve N-Me-l-Ala from N-Me-d-Ala, l-allo-Ile from l-Ile and l-Leu, and partial and total syntheses of 2, and permitted unambiguous assignment of structures for 1 (revised) and 2-4. Consideration of diagnostic ROESY correlations for the hydroxamates 1 and 3-4, and a calculated solution structure for 1, revealed how cross-ring H-bonding to the hydroxamate moiety influences (defines/stabilizes) the cyclic peptide conformation. Such knowledge draws attention to the prospect that hydroxamates may be used as molecular bridges to access new cyclic peptide conformations, offering the prospect of new biological properties, including enhanced oral bioavailability.

9.
Curr Opin Immunol ; 83: 102351, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37276819

RESUMO

Metabolite-based T-cell immunity is emerging as a major player in antimicrobial immunity, autoimmunity, and cancer. Here, small-molecule metabolites were identified to be captured and presented by the major histocompatibility complex class-I-related molecule (MR1) to T cells, namely mucosal-associated invariant T cells (MAIT) and diverse MR1-restricted T cells. Both MR1 and MAIT are evolutionarily conserved in many mammals, suggesting important roles in host immunity. Rational chemical modifications of these naturally occurring metabolites, termed altered metabolite ligands (AMLs), have advanced our understanding of the molecular correlates of MAIT T cell receptor (TCR)-MR1 recognition. This review provides a generalized framework for metabolite recognition and modulation of MAIT cells.


Assuntos
Células T Invariantes Associadas à Mucosa , Animais , Humanos , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Antígenos de Histocompatibilidade Menor , Antígenos de Histocompatibilidade Classe I , Receptores de Antígenos de Linfócitos T/metabolismo , Mamíferos
10.
Microbiol Spectr ; 11(4): e0046523, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37289062

RESUMO

Shorter and more effective treatment regimens as well as new drugs are urgent priorities for reducing the immense global burden of tuberculosis (TB). As treatment of TB currently requires multiple antibiotics with diverse mechanisms of action, any new drug lead requires assessment of potential interactions with existing TB antibiotics. We previously described the discovery of wollamides, a new class of Streptomyces-derived cyclic hexapeptides with antimycobacterial activity. To further assess the value of the wollamide pharmacophore as an antimycobacterial lead, we determined wollamide interactions with first- and second-line TB antibiotics by determining fractional inhibitory combination index and zero interaction potency scores. In vitro two-way and multiway interaction analyses revealed that wollamide B1 synergizes with ethambutol, pretomanid, delamanid, and para-aminosalicylic acid in inhibiting the replication and promoting the killing of phylogenetically diverse clinical and reference strains of the Mycobacterium tuberculosis complex (MTBC). Wollamide B1 antimycobacterial activity was not compromised in multi- and extensively drug-resistant MTBC strains. Moreover, growth-inhibitory antimycobacterial activity of the combination of bedaquiline/pretomanid/linezolid was further enhanced by wollamide B1, and wollamide B1 did not compromise the antimycobacterial activity of the isoniazid/rifampicin/ethambutol combination. Collectively, these findings add new dimensions to the desirable characteristics of the wollamide pharmacophore as an antimycobacterial lead compound. IMPORTANCE Tuberculosis (TB) is an infectious disease that affects millions of people globally, with 1.6 million deaths annually. TB treatment requires combinations of multiple different antibiotics for many months, and toxic side effects can occur. Therefore, shorter, safer, more effective TB therapies are required, and these should ideally also be effective against drug-resistant strains of the bacteria that cause TB. This study shows that wollamide B1, a chemically optimized member of a new class of antibacterial compounds, inhibits the growth of drug-sensitive as well as multidrug-resistant Mycobacterium tuberculosis isolated from TB patients. In combination with TB antibiotics, wollamide B1 synergistically enhances the activity of several antibiotics, including complex drug combinations that are currently used for TB treatment. These new insights expand the catalogue of the desirable characteristics of wollamide B1 as an antimycobacterial lead compound that might inspire the development of improved TB treatments.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Antituberculosos/química , Etambutol/farmacologia , Tuberculose/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Testes de Sensibilidade Microbiana
11.
Biochem Pharmacol ; 213: 115598, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37201876

RESUMO

Limacodidae is a family of lepidopteran insects comprising >1500 species. More than half of these species produce pain-inducing defensive venoms in the larval stage, but little is known about their venom toxins. Recently, we characterised proteinaceous toxins from the Australian limacodid caterpillar Doratifera vulnerans, but it is unknown if the venom of this species is typical of other Limacodidae. Here, we use single animal transcriptomics and venom proteomics to investigate the venom of an iconic limacodid, the North American saddleback caterpillar Acharia stimulea. We identified 65 venom polypeptides, grouped into 31 different families. Neurohormones, knottins, and homologues of the immune signaller Diedel make up the majority of A.stimulea venom, indicating strong similarities to D. vulnerans venom, despite the large geographic separation of these caterpillars. One notable difference is the presence of RF-amide peptide toxins in A. stimulea venom. Synthetic versions of one of these RF-amide toxins potently activated the human neuropeptide FF1 receptor, displayed insecticidal activity when injected into Drosophila melanogaster, and moderately inhibited larval development of the parasitic nematode Haemonchus contortus. This study provides insights into the evolution and activity of venom toxins in Limacodidae, and provides a platform for future structure-function characterisation of A.stimulea peptide toxins.


Assuntos
Mariposas , Peçonhas , Humanos , Animais , Peçonhas/química , Amidas , Drosophila melanogaster , Austrália , Peptídeos/toxicidade
12.
J Periodontal Res ; 58(3): 544-552, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37002616

RESUMO

BACKGROUND AND OBJECTIVE: Protease-activated receptor-2 (PAR2 ), a pro-inflammatory G-protein coupled receptor, has been associated with pathogenesis of periodontitis and the resulting bone loss caused by oral pathogens, including the keystone pathogen Porphyromonas gingivalis (P. gingivalis). We hypothesised that administration of a PAR2 antagonist, GB88, might prevent inflammation and subsequent alveolar bone resorption in a mouse model of periodontal disease. METHODS: Periodontitis was induced in mice by oral inoculations with P. gingivalis for a total of eight times over 24 days. The infected mice were treated with either GB88 or vehicle for the duration of the trial. Following euthanasia on day 56, serum was collected and used for the detection of mast cell tryptase. The right maxillae were defleshed and stained with methylene blue to measure the exposed cementum in molar teeth. The left maxillae were prepared for cryosections followed by staining for tartrate-resistant acid phosphatase to identify osteoclasts or with toluidine blue to identify mast cells. Reverse transcription quantitative PCR (RT-qPCR) was used to quantify the expression of inflammatory cytokines in the gingival tissue. Supernatants of T-lymphocyte cultures isolated from the regional lymph nodes were assayed using a cytometric bead array to measure the Th1/Th2/Th17 cytokine levels. RESULTS: Measurement of the exposed cementum showed that GB88 reduced P. gingivalis-induced alveolar bone loss by up to 69%. GB88 also prevented the increase in osteoclast numbers observed in the infected mice. Serum tryptase levels were significantly elevated in both the infected groups, and not altered by treatment. RT-qPCR showed that GB88 prevented the upregulation of Il1b, Il6, Ifng and Cd11b. In T-lymphocyte supernatants, only IFNγ and IL-17A levels were increased in response to infection, but this was prevented by GB88 treatment. CONCLUSIONS: GB88 significantly reduced osteoclastic alveolar bone loss in mice infected with P. gingivalis, seemingly by preventing the upregulation of several inflammatory cytokines. PAR2 antagonism may be an effective treatment strategy for periodontal disease.


Assuntos
Perda do Osso Alveolar , Doenças Periodontais , Periodontite , Camundongos , Animais , Perda do Osso Alveolar/patologia , Receptor PAR-2 , Doenças Periodontais/complicações , Periodontite/tratamento farmacológico , Periodontite/prevenção & controle , Periodontite/complicações , Porphyromonas gingivalis , Citocinas/análise , Inflamação , Modelos Animais de Doenças
13.
J Innate Immun ; 15(1): 468-484, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36882040

RESUMO

Complement activation and Rab GTPase trafficking are commonly observed in inflammatory responses. Recruitment of innate immune cells to sites of infection or injury and secretion of inflammatory chemokines are promoted by complement component 5a (C5a) that activates the cell surface protein C5a receptor1 (C5aR1). Persistent activation can lead to a myriad of inflammatory and autoimmune diseases. Here, we demonstrate that the mechanism of C5a induced chemotaxis of human monocyte-derived macrophages (HMDMs) and their secretion of inflammatory chemokines are controlled by Rab5a. We find that C5a activation of the G protein coupled receptor C5aR1 expressed on the surface of HMDMs, recruits ß-arrestin2 via Rab5a trafficking, then activates downstream phosphatidylinositol 3-kinase (PI3K)/Akt signaling that culminates in chemotaxis and secretion of pro-inflammatory chemokines from HMDMs. High-resolution lattice light-sheet microscopy on live cells showed that C5a activates C5aR1-GFP internalization and colocalization with Rab5a-tdTomato but not with dominant negative mutant Rab5a-S34N-tdTomato in HEK293 cells. We found that Rab5a is significantly upregulated in differentiated HMDMs and internalization of C5aR1 is dependent on Rab5a. Interestingly, while knockdown of Rab5a inhibited C5aR1-mediated Akt phosphorylation, it did not affect C5aR1-mediated ERK1/2 phosphorylation or intracellular calcium mobilization in HMDMs. Functional analysis using transwell migration and µ-slide chemotaxis assays indicated that Rab5a regulates C5a-induced chemotaxis of HMDMs. Further, C5aR1 was found to mediate interaction of Rab5a with ß-arrestin2 but not with G proteins in HMDMs. Furthermore, C5a-induced secretion of pro-inflammatory chemokines (CCL2, CCL3) from HMDMs was attenuated by Rab5a or ß-arrestin2 knockdown or by pharmacological inhibition with a C5aR1 antagonist or a PI3K inhibitor. These findings reveal a C5a-C5aR1-ß-arrestin2-Rab5a-PI3K signaling pathway that regulates chemotaxis and pro-inflammatory chemokine secretion in HMDMs and suggests new ways of selectively modulating C5a-induced inflammatory outputs.


Assuntos
Quimiotaxia , Complemento C5a , Humanos , Complemento C5a/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células HEK293 , Macrófagos , Quimiocinas/metabolismo
14.
Front Immunol ; 14: 1107497, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845106

RESUMO

Introduction: The antigen presentation molecule MHC class I related protein-1 (MR1) is best characterized by its ability to present bacterially derived metabolites of vitamin B2 biosynthesis to mucosal-associated invariant T-cells (MAIT cells). Methods: Through in vitro human cytomegalovirus (HCMV) infection in the presence of MR1 ligand we investigate the modulation of MR1 expression. Using coimmunoprecipitation, mass spectrometry, expression by recombinant adenovirus and HCMV deletion mutants we investigate HCMV gpUS9 and its family members as potential regulators of MR1 expression. The functional consequences of MR1 modulation by HCMV infection are explored in coculture activation assays with either Jurkat cells engineered to express the MAIT cell TCR or primary MAIT cells. MR1 dependence in these activation assays is established by addition of MR1 neutralizing antibody and CRISPR/Cas-9 mediated MR1 knockout. Results: Here we demonstrate that HCMV infection efficiently suppresses MR1 surface expression and reduces total MR1 protein levels. Expression of the viral glycoprotein gpUS9 in isolation could reduce both cell surface and total MR1 levels, with analysis of a specific US9 HCMV deletion mutant suggesting that the virus can target MR1 using multiple mechanisms. Functional assays with primary MAIT cells demonstrated the ability of HCMV infection to inhibit bacterially driven, MR1-dependent activation using both neutralizing antibodies and engineered MR1 knockout cells. Discussion: This study identifies a strategy encoded by HCMV to disrupt the MR1:MAIT cell axis. This immune axis is less well characterized in the context of viral infection. HCMV encodes hundreds of proteins, some of which regulate the expression of antigen presentation molecules. However the ability of this virus to regulate the MR1:MAIT TCR axis has not been studied in detail.


Assuntos
Células T Invariantes Associadas à Mucosa , Humanos , Antígenos de Histocompatibilidade Classe I , Citomegalovirus/metabolismo , Antígenos de Histocompatibilidade Menor , Receptores de Antígenos de Linfócitos T/metabolismo
15.
Proc Natl Acad Sci U S A ; 120(4): e2212813120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36649417

RESUMO

The immune system must be able to respond to a myriad of different threats, each requiring a distinct type of response. Here, we demonstrate that the cytoplasmic lysine deacetylase HDAC7 in macrophages is a metabolic switch that triages danger signals to enable the most appropriate immune response. Lipopolysaccharide (LPS) and soluble signals indicating distal or far-away danger trigger HDAC7-dependent glycolysis and proinflammatory IL-1ß production. In contrast, HDAC7 initiates the pentose phosphate pathway (PPP) for NADPH and reactive oxygen species (ROS) production in response to the more proximal threat of nearby bacteria, as exemplified by studies on uropathogenic Escherichia coli (UPEC). HDAC7-mediated PPP engagement via 6-phosphogluconate dehydrogenase (6PGD) generates NADPH for antimicrobial ROS production, as well as D-ribulose-5-phosphate (RL5P) that both synergizes with ROS for UPEC killing and suppresses selective inflammatory responses. This dual functionality of the HDAC7-6PGD-RL5P axis prioritizes responses to proximal threats. Our findings thus reveal that the PPP metabolite RL5P has both antimicrobial and immunomodulatory activities and that engagement of enzymes in catabolic versus anabolic metabolic pathways triages responses to different types of danger for generation of inflammatory versus antimicrobial responses, respectively.


Assuntos
Anti-Infecciosos , Triagem , Espécies Reativas de Oxigênio/metabolismo , NADP/metabolismo , Macrófagos/metabolismo , Anti-Infecciosos/metabolismo , Via de Pentose Fosfato/fisiologia
16.
FEBS J ; 290(11): 2805-2832, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35303381

RESUMO

Histone deacetylases (HDACs) catalyse removal of acetyl groups from lysine residues on both histone and non-histone proteins to control numerous cellular processes. Of the 11 zinc-dependent classical HDACs, HDAC4, 5, 7 and 9 are class IIa HDAC enzymes that regulate cellular and developmental processes through both enzymatic and non-enzymatic mechanisms. Over the last two decades, HDAC7 has been associated with key roles in numerous physiological and pathological processes. Molecular, cellular, in vivo and disease association studies have revealed that HDAC7 acts through multiple mechanisms to control biological processes in immune cells, osteoclasts, muscle, the endothelium and epithelium. This HDAC protein regulates gene expression, cell proliferation, cell differentiation and cell survival and consequently controls development, angiogenesis, immune functions, inflammation and metabolism. This review focuses on the cell biology of HDAC7, including the regulation of its cellular localisation and molecular mechanisms of action, as well as its associative and causal links with cancer and inflammatory, metabolic and fibrotic diseases. We also review the development status of small molecule inhibitors targeting HDAC7 and their potential for intervention in different disease contexts.


Assuntos
Histona Desacetilases , Neoplasias , Humanos , Histona Desacetilases/metabolismo , Transdução de Sinais/genética , Inflamação , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico
17.
J Biol Chem ; 298(12): 102714, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36403855

RESUMO

The Major Histocompatibility Complex class I-related protein 1 (MR1) presents small molecule metabolites, drugs, and drug-like molecules that are recognized by MR1-reactive T cells. While we have an understanding of how antigens bind to MR1 and upregulate MR1 cell surface expression, a quantitative, cell-free, assessment of MR1 ligand-binding affinity was lacking. Here, we developed a fluorescence polarization-based assay in which fluorescent MR1 ligand was loaded into MR1 protein in vitro and competitively displaced by candidate ligands over a range of concentrations. Using this assay, ligand affinity for MR1 could be differentiated as strong (IC50 < 1 µM), moderate (1 µM < IC50 < 100 µM), and weak (IC50 > 100 µM). We demonstrated a clear correlation between ligand-binding affinity for MR1, the presence of a covalent bond between MR1 and ligand, and the number of salt bridge and hydrogen bonds formed between MR1 and ligand. Using this newly developed fluorescence polarization-based assay to screen for candidate ligands, we identified the dietary molecules vanillin and ethylvanillin as weak bona fide MR1 ligands. Both upregulated MR1 on the surface of C1R.MR1 cells and the crystal structure of a MAIT cell T cell receptor-MR1-ethylvanillin complex revealed that ethylvanillin formed a Schiff base with K43 of MR1 and was buried within the A'-pocket. Collectively, we developed and validated a method to quantitate the binding affinities of ligands for MR1 that will enable an efficient and rapid screening of candidate MR1 ligands.


Assuntos
Apresentação de Antígeno , Ativação Linfocitária , Ligantes , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Complexo Principal de Histocompatibilidade
18.
Chem Commun (Camb) ; 58(89): 12475-12478, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36274265

RESUMO

An alpha helical turn can be reproduced in a cyclic pentapeptide if the first and fifth amino acid sidechains are correctly joined. Here structural studies (CD, NMR, in silico) reveal why N-methylation at positions not involved in hydrogen bonds disrupts helicity whereas ester bonds can maintain helicity and promote greater cell uptake.


Assuntos
Amidas , Peptídeos Cíclicos , Ésteres , Conformação Proteica em alfa-Hélice , Aminoácidos/química , Dicroísmo Circular
19.
J Cell Biol ; 221(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36129434

RESUMO

MR1 is a highly conserved microbial immune-detection system in mammals. It captures vitamin B-related metabolite antigens from diverse microbes and presents them at the cell surface to stimulate MR1-restricted lymphocytes including mucosal-associated invariant T (MAIT) cells. MR1 presentation and MAIT cell recognition mediate homeostasis through host defense and tissue repair. The cellular mechanisms regulating MR1 cell surface expression are critical to its function and MAIT cell recognition, yet they are poorly defined. Here, we report that human MR1 is equipped with a tyrosine-based motif in its cytoplasmic domain that mediates low affinity binding with the endocytic adaptor protein 2 (AP2) complex. This interaction controls the kinetics of MR1 internalization from the cell surface and minimizes recycling. We propose MR1 uses AP2 endocytosis to define the duration of antigen presentation to MAIT cells and the detection of a microbial metabolic signature by the immune system.


Assuntos
Apresentação de Antígeno , Endocitose , Antígenos de Histocompatibilidade Classe I , Antígenos de Histocompatibilidade Menor , Células T Invariantes Associadas à Mucosa , Complexo 2 de Proteínas Adaptadoras/genética , Complexo 2 de Proteínas Adaptadoras/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Ativação Linfocitária , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Células T Invariantes Associadas à Mucosa/metabolismo , Tirosina , Vitaminas
20.
J Med Chem ; 65(17): 11759-11775, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35984914

RESUMO

Glucagon-like peptide-1 (GLP-1) lowers blood glucose by inducing insulin but also has other poorly understood properties. Here, we show that hydroxy amino acids (Thr11, Ser14, Ser17, Ser18) in GLP-1(7-36) act in concert to direct cell signaling. Mutating any single residue to alanine removes one hydroxyl group, thereby reducing receptor affinity and cAMP 10-fold, with Ala11 or Ala14 also reducing ß-arrestin-2 10-fold, while Ala17 or Ala18 also increases ERK1/2 phosphorylation 5-fold. Multiple alanine mutations more profoundly bias signaling, differentially silencing or restoring one or more signaling properties. Mutating three serines silences only ERK1/2, the first example of such bias. Mutating all four residues silences ß-arrestin-2, ERK1/2, and Ca2+ maintains the ligand and receptor at the membrane but still potently stimulates cAMP and insulin secretion in cells and mice. These novel findings indicate that hydrogen bonding cooperatively controls cell signaling and highlight an important regulatory hydroxyl patch in hormones that activate class B G protein-coupled receptors.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Receptor do Peptídeo Semelhante ao Glucagon 1 , Alanina , Animais , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Insulina/metabolismo , Camundongos , Transdução de Sinais , beta-Arrestina 2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...